Mixed states on neural network with structural learning
نویسندگان
چکیده
We investigated the properties of mixed states in a sparsely encoded associative memory model with a structural learning method. When mixed states are made of s memory patterns, s types of mixed states, which become equilibrium states of the model, can be generated. To investigate the properties of s types of the mixed states, we analyzed them using the statistical mechanical method. We found that the storage capacity of the memory pattern and the storage capacity of only a particular mixed state diverge at the sparse limit. We also found that the threshold value needed to recall the memory pattern is nearly equal to the threshold value needed to recall the particular mixed state. This means that the memory pattern and the particular mixed state can be made to easily coexist at the sparse limit. The properties of the model obtained by the analysis are also useful for constructing a transform-invariant recognition model.
منابع مشابه
Comparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کاملA Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملArtificial Neural Network Involved in the Action of Optimum Mixed Refrigerant (Domestic Refrigerator) (TECHNICAL NOTE)
This analysis principally focuses on the implementation of Radial basis function (RBF) and back propagation (BPA) algorithms for training artificial neural network (ANN) to get the optimum mixture of Hydro fluorocarbon (HFC) and organic compound (Hydrocarbons) for obtaining higher coefficient of Performances (COPs). The thermodynamical properties of mixed refrigerants are observed using REFPROP...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2004